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Abstract

Early detection of cardiovascular diseases through assessment of cardiac function is
vital for accurate diagnosis, timely treatment, and improved prognosis. Among the vari-
ous methods for estimation of ventricular function, 2D echocardiography remains to be
one of the most valuable, accessible, and practical modalities in clinical practice. How-
ever, three main problems have persisted in the assessment of left ventricular (LV) ejec-
tion systolic function through ejection fraction (EF) measurement. First, current methods
for analysis requires a series of procedures which are labor-intensive, time-consuming,
and require high-level of skills to perform correctly. Second, semantic segmentation in
2D echocardiography often deals with low-quality, low-contrast images. Last, estimation
of EF suffers from high inter-observer variability reaching as high as 14% error. To solve
these problems, we developed segmentation and action recognition models in two-view
2D echocardiography for the automatic semantic segmentation of LV regions and estima-
tion of LV EF. The segmentation model named channel-separated and dilated dense-Unet
(CDDenseUnet) is capable of predicting segmented frames which outperformed current
state-of-the-art architectures in terms of dice score, mean surface distance, and run-time
performance reaching scores of 95.2%, 1.2mm, and 0.02 seconds, respectively. On the
other hand, the prediction model named Two-Channel R(2+1)d is capable of analyz-
ing segmented LV regions from echocardiogram videos in apical 2-chamber (A2C) and
apical 4-chamber (A4C) views which produces better results than traditional estimation
of EF reaching a mean absolute error of 3.8%. These new models have the potential
to vastly improve LV EF measurement for the diagnosis of a wide variety of cardiac
conditions and find great utility especially in complicated clinical scenarios or limited
resource-settings where echocardiograms are prone to generation of sub-optimal image
quality.
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1 Introduction

Cardiovascular diseases (CVD) are serious illnesses which affect millions of people world-
wide [12, 14]. CVD include several heart and blood vessel complications such as cere-
brovascular disease, rheumatic heart disease, heart failure [57], and, even, invasive types like
cardiac amyloidosis [41]. Physicians typically diagnose these diseases using medical imag-
ing tools such as echocardiograms, magnetic resonance imaging scans, and computerized
tomography scans [26, 41, 46, 48]. Among these imaging modalities, 2D echocardiography
is commonly used to analyze the cardiac function of the LV regions [22, 32], since it is fast,
cheap, and non-invasive [33, 41, 48]. With these modalities, along with growing research
interests in this field, medical image datasets are now becoming increasingly common and
publicly available with the purpose of improving analysis, detection, and treatment of various
diseases.
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Figure 1: Proposed framework: CDDenseUnet (top) and TC-R(2+1)d (bottom).

Diagnosis of CVD typically requires a physician to analyze at least one cardiac cycle
of an echocardiogram by tracing the borders of the LV endocardium before estimating EF
[38, 57]. Not only is this labor intensive, but it is also time-consuming and requires high
clinical skills to perform correctly [35]. Further, inter-observer variability is a major concern
when measuring EF which could reach as high as 14% [24, 40, 47]. It is therefore critical
to analyze echocardiography images and measure EF which minimizes variability, reduces
segmentation errors, and processes automatic results in real-time.

In this research, segmentation and action recognition models were developed for the pur-
pose of real-time, fully-automated, and accurate segmentation of LV regions and estimation
of EF in A4C and A2C 2D echocardiography views (see Figure 1 for full framework). Our
contributions in this work are:

* Developed a segmentation model which produces fast and accurate semantic segmen-
tations of echocardiography images;
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* Developed a two-channel action recognition model which uses fully-segmented LV
regions in A2C and A4C cardiac views as inputs for the estimation of EF;

» Evaluated that when dealing with noisy, low-contrast, and sup-obtimal echocardio-
grams, it is necessary to estimate EF from fully-segmented frames;

* We believe that our overall framework is the first fully deep learning approach to
achieve state-of-the-art performance in EF estimation superior to other works which
used Modified Simpson’s Rule.

The rest of the paper is structured as follows: section 2 discusses some related literature
for semantic segmentation and action recognition models. The methods used for our models
are discussed in detail in section 3. Section 4 gives an overview of the dataset used and
experiment design. In section 5, we present the results of the experiments. Finally, the last
sections discuss the research findings.

2 Review of Related Literature

2.1 Medical image segmentation

Segmentation is an important task for medical image analysis [18] especially for fields with
difficult to perform imaging modalities, and those which produces low-quality images such
as echocardiography. Despite the number of models created for medical image segmentation
[16,23,42,44, 54], LV segmentation in echocardiography still remains a prevailing problem.
As mentioned in works by Leclerc et al. [29] and Liu et al. [31], echocardiogram videos are
noisy and low-contrast resulting in difficult to differentiate tissue regions. Individual frames
might also be incomplete with some edges, commonly the apex, mistakenly cropped-out
during extraction by an echocardiographer resulting to sub-optimal images (see Figure 2).
The development of Unet [42] along with
new techniques in improving label coherence
such as squeeze & excitation modules [20],
attention mechanisms [52], and atrous spatial
pyramid pooling [7] paved way for the creation
of several Unet variants which improve on its -
performance in specialized biomedical tasks. ® ®
Related to our work, the success of attention
mechanisms [52] in highlighting relevant spa- Figure 2: (a) Portion partially cropped-
tial information served as the inspiration for the out during extraction in A2C cardiac view.
development of pyramid local attention network  (b) Parts of the left ventricle in A4C car-
(PLANet) by Liu et al. [31]. Pyramid local at-  diac view. Image extracted from CAMUS
tention and label coherence learning modules dataset [29].
helped their model in learning context coher-
ence for each pixels and its neighbors. With these mechanisms, PLANet achieved SOTA
results for segmentation of the endocardium and epicardium outperforming architectures
such as Unet [42], and Unet++ [56] as high as 96.2%, 1.5mm, and 4.6mm in terms of dice
score, mean surface distance, and Hausdorff distance, respectively.

LV Apex
— Endocardium
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2.2 Ejection Fraction Estimation

The most common measurement for CVD diagnosis is to calculate LV EF or its pumping
capacity within each cardiac cycle. This measurement has several diagnostic implications
and is used by physicians to: 1) determine a patient’s current status, 2) appropriately choose
the correct treatment, and 3) check the treatment’s effect on a patient [9, 32, 53]. Calculating
EF requires quantification of endocardium LV volumes in end-systole (ES) and end-diastole
(ED), and in at least two cardiac views, typically in A4C and A2C [27, 32, 43], using modi-
fied Simpson’s rule [13, 57]. This is calculated as:

EF — 100 x VEL—VES (1
ED

Owing to the lack of large-scale datasets, the use of action recognition models to estimate
EF was previously not possible. Therefore, EF estimation in deep learning traditionally
relies on the performance of segmentation models in predicting masks of LV regions before
Simpson’s rule is used for EF measurement. Better segmentation models which produce
more accurate segmentation masks provide better estimates of EF. The release of CAMUS
[29] and EchoNet [37] datasets aims to solve this problem, and to increase the development
of specialized segmentation and prediction models for echocardiography.

In the work by Ouyang et al. [38], they used a DeepLabv3 [7, 8] and R(2+1)d [50]
for their EchoNet-Dynamic framework. The R(2+1)d model developed by Tran et al. [50]
factorizes spatial and temporal kernels from a given video clip which helps the model learn
relevant features within the spatial domain and across different timestamps [2, 38]. Results of
their experiments showed that the beat-by-beat evaluation of EchoNet-Dynamic scored 4.05
mean absolute error (MAE), 5.32 root mean square error (RMSE), and 0.81 R2. However,
their work was only limited to A4C cardiac view which completely opposes the traditional
approach, and only used segmentation for test-time augmentation. A dual-view network
was also developed by Behnami et al. [5] which concatenates feature map results of a C3D
[49] action recognition model to estimate EF. However, their approach completely skips the
segmentation step and directly estimates EF from actual, low-quality frames. We will see in
section 5 that the use of fully-segmented frames is crucial to produce more robust results,
especially with sub-optimal images.

3 Methodology

3.1 Channel-separated and Dilated Dense-Unet

Dense convolution is the main characteristic and building block of our segmentation model.
As mentioned in the work of Huang e al. [21], concatenation of feature maps allow dense
convolution layers to retain and propagate important features throughout the network which
are important for model learning. A standard DenseNet is composed of L layers, each with
dense convolutions, batch normalization, pooling layers, and ReLLU activation functions.
While ResNet [17] introduced skip connections through addition of ResBlock outputs with
its inputs, DenseNet further improves on these connections by concatenating layer outputs
with preceding feature maps [55].

In this research, a dense block for the segmentation model is composed of three series
of batch normalization, ReLU, and convolution blocks shown in Figure 3. Notable changes
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of our dense block against a standard dense block are the addition of dilation and group
convolutions. Similar works by Cao et al. [6], Guan et al. [15], and Li et al. [30], added
modified dense modules to Unet to tackle problems in tomography, microscopy, and tumor
segmentation. The success of these models served as inspiration for the development of a
specialized network for echocardiography.
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Figure 3: Schematic and parts of CDDenseUnet.
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The low-contrast, noisy, and variable nature of echocardiography images render standard
convolution layers and the Unet architecture insufficient in learning small features necessary
for the segmentation of LV regions [1]. With this, CDDenseUnet adopts two modifications
in convolution layers to improve feature extraction, segmentation accuracy, and model infer-
ence time. The first modification implements group convolutions by filtering feature maps
from an input layer using multiple kernels [25]. Group convolutions as described in the
works of Howard et al. [19] and Tran et al. [51], reduces GPU compute requirements while
increasing model accuracy. In this work, we add group convolutions by factoring the output
channels with the middle channels, which is equivalent to a dense block’s growth rate ex-
pressed as g. Similar to the work of Cao ef al. [6], g is equal to the number of layer output
channels divided by the layer size per dense layer, 7 Loc Each dense layer in our model has a
size of four dense blocks with output channels equal to 64, 128, 256, and 512. Another mod-
ification to our dense blocks is the addition of dilation to help extract semantic information
among neighboring pixels. Each dense block has a dilation rate of d = 2 (see Figure 3 for
implementation sample).

The combination of all these components comprises the proposed CDDenseUnet seg-
mentation model shown in Figure 1. The model takes-in 256 x 256 resized echo images
and initially passes through a 7 x 7 convolution layer. Succeeding feature extractions are in
the form of dense layers (green), transition blocks (red), up-sampling layers (purple), and
bottleneck blocks (yellow).

3.2 Two-Channel R(2+1)d

In this work, we extended the R(2+1) model to take-in two-view video clip inputs as seen in
Figure 1. Prior to training the model, 256 x 256 resolution video clips were first segmented
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using the best model from CDDenseUnet. Our model takes-in input clips of shape 3 x N x
112 x 112, where N is a hyper-parameter that determines the number of frames to include
from a video. Inputs for TC-R(2+1)d are 32-frame video clips with a sampling stride =
2. Due to the nature of the dataset used in this work, having less than 32-frames per video
and only one cardiac cycle, we duplicated a video clip by stacking it nine times to imitate
multiple cardiac cycles.

A2C EF Channel

X
512
- i fon,
512 - TR x1 Convolution, ix1 Convolution, 5 B
el el )
A4C EF Channel
512
B

comrente () o

Figure 4: Feature Fusion Attention Module.

In order to estimate EF from two-views, we developed a feature fusion attention module
(FFAM) which builds on the squeeze & excitation module by Hu et al. [20], and the feature
fusion module by Liu et al. [31]. Channel-wise attention is extracted from concatenated
feature maps of A2C and A4C branches. This weight is then multiplied to each branch
feature maps before averaging the feature results. The full diagram is shown in Figure 4.

4 Experiment Setups

4.1 Dataset & Metrics

We evaluated our models using the Cardiac Acquisitions for Multi-structure Ultrasound Seg-
mentation (CAMUS) dataset released in 2019 by Lerlec et al. [29]. The dataset is composed
of fully annotated echocardiography videos from 500 patients (50 of which are only acces-
sible through the online platform) in two cardiac views for a total of 1000 videos. Ground
truth masks of LV regions including the endocardium, epicardium, and left atrium in both
ED and ES cardiac phases, and relevant cardiac assessments such as EF, ES volume, and ED
volume were also provided to allow measurement of geometric and clinical performance for
created models. Additionally, the dataset has different image qualities distributed into Good
(175), Medium (230), and Poor (95). We made-use only of the 900 training videos provided,
and followed the same training procedures of Leclerc et al. [29] where the dataset is split for
10-fold cross validation with 80% used for training, 10% for validation, and 10% for testing.

We used dice score, mean absolute distance (MAD), and 2D Hausdorff distance (HD) to
evaluate the performance of CDDenseUnet. Similar to the work of Ouyang et al. [38], we
used mean absolute error (MAE), root mean square error (RMSE), and R2 to evaluate the
EF estimates of TC-R(2+1)d. Additionally, we computed for correlation and bias for direct
comparison to other EF estimation models.

For the above mentioned metrics, we used the MONALI [10] library to compute the seg-
mentation geometric metrics, and scikit-learn [39] library to calculate the regression clinical
metrics. We excluded poor quality frames during model testing since they are clinically
useless as suggested by Leclerc et al. [29].
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4.2 CDDenseUnet & TC-R(2+1)d setups

We used cross-entropy loss and dice loss to supervise training of the segmentation model
(see equation 2). Deep supervision was also implemented during training which produces
segmentation maps at different resolutions extracted from the decoder path. The final loss
function is a weighted loss of all segmentation maps (see equation 3).

M . .
2 X intersection
Lossy =— ) Yo clogprede) +(1 — —— 2)
c=1 8 ( preds ) ( ygt+ypred
Lossp = Loss; +0.5 - (lossy + losss +10ss4) /3 3)

We trained CDDenseUnet using an Adam optimizer with a learning rate of 10e~*, and
in batch sizes of 6. A cosine annealing scheduler is used to optimize the weights for all 60
epochs. During training, we applied data augmentation by random horizontal flip, elastic
transform, random rotation from -10° to 10°, random scaling from 0.7 to 1.3, and random
translation from -0.3 to 0.3.

Since EF estimation is framed as a regression problem, we used mean squared error loss
to estimate the difference between the true value against the predicted estimate of EF. We
trained TC-R(2+1)d using Adam optimizer with a learning rate of 10e ™. We also imple-
mented StepLR scheduler to decay the learning rate by 0.1 every 15 epochs. The model was
trained for a total of 45 epochs at mini batch sizes of 5. Random translation was also used
during training. All of our experiments were implemented using PyTorch and OpenCV using
Google Colab Pro (Tesla P100).

S Experiment Results & Discussion

Various segmentation algorithms were used in the experiments of Leclerc et al. [29] to tackle
problems in the analysis of echocardiograms. These methods include non-deep learning al-
gorithms such as structured random forests (SRF) [11, 28], and B-spline explicit active sur-
face model (BEASM) [3, 4]. For deep learning algorithms, they trained different Unet [42]
variants with changes in loss functions and architecture design, anatomically constrained
neural networks (ACNN) [36], stacked hourglass (SHG) used for human pose estimation
[34], and Unet++ [56]. Results of these methods are shown in Tables 1, 2, and 3. We also
included other models for comparison such as PLANet [31], and residual-dilated Unet (Res-
DUnet) [1].

Performance results in Tables 1, 2, and 3 show that CDDenseUnet outperforms existing
methods for 14 out of 19 endocardium, epicardium, and left atrium metric scores. Notable
among these scores are the results for LV endocardium segmentation (the region typically
used for EF estimation) where our model attained the highest score of 95.2% and 1.2mm for
ED dice score and MAD, respectively. Additionally, inference time for segmentation predic-
tion of a single frame is comparable in performace against lightweight models of Unetl and
Unet2 with an average time of 0.015 seconds on a Tesla P100 GPU. We tested the perfor-
mance of Unet2 in the same computational environment and yielded an average runtime of
0.010 seconds for a single image. Comparing computation specifications with PLANet (run-
time of 0.016 seconds) which used two Titan V GPUs, we evaluated our model on a Tesla
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Table 1: Performance of CDDenseUnet against other segmentation methods, endocardium.

Model ED ES Inference
1 Dice Score | | MAD (mm) | | HD (mm) | 1 Dice Score | | MAD (mm) | | HD (mm) | Time (s)
SRF[29] 0.895 £+ 0.074 2.8£3.6 112 £10.2 | 0.848 £0.137 36+£78 11.6 £ 13.6 -

BEASM-fully[29] 0.879 & 0.065 33+18 92+49 | 0.826+0.137 38+2.1 99+5.1 -
BEASM-semi[29] 0.920 £ 0.039 22+12 6.0+24 | 0.861 +0.070 31+16 77+32 -

Unet1[29] 0.934 £ 0.042 1.7+1.0 55+29 | 0.905 =+ 0.063 1.8+1.3 57+37 0.090¢

Unet2[29] 0.939 + 0.043 1.6 13 53+£3.6 | 0916 +0.061 1.6+ 1.6 55+38 0.140¢
ACNN][29] 0.932 + 0.034 1.7£09 58 £3.1 0.903 & 0.059 1.9+ 1.1 6.0+39 -
SHGI[29] 0.934 4 0.034 1.74+09 5.6+28 | 0.906 +0.057 1.8+ 1.1 58+38 -
Unet++[29] 0.927 £ 0.046 1.8+ 1.1 6.5+39 | 0.904 +0.060 1.8+1.0 63+42 -
ResDUnet [1] 0.951 £ 0.030 14+12 45+£1.2 - - - -

PLANet [31] 0.951 +0.018 1.3+£05 42+14 | 0931 +0.032 1.4+0.6 43+15 0.016°

CDDenseUnet (ours) | 0.952 4 0.003 1.2+£0.1 44+0.3 | 0931+ 0.003 1.2+0.1 44+04 0.015¢
Tesla M60, PTitan V, “Tesla P100

P100 GPU which has weaker technical and performance specifications, thus inferring that
our model is faster when measured in the same environment. Sample prediction contours of
CDDenseUnet against ground truth contours are shown in Figure 5.

Table 2: Performance of CDDenseUnet against other segmentation methods, epicardium.

Model ED ES Inference
1 Dice Score | | MAD (mm) | | HD (mm) | 7 Dice Score | | MAD (mm) | | HD (mm) | Time (s)
SRF[29] 0.914 £+ 0.057 32420 13.0£9.1 | 0.901 +0.078 35+47 13.0+11.1 -

BEASM-fully[29] | 0.895 £ 0.051 39+21 10.6 +5.1 | 0.880 £ 0.054 42+20 11.2+5.1 -
BEASM-semi[29] 0.917 £0.038 32+ 1.6 8.2+£3.0 | 0.900 + 0.042 35+£1.7 92+34 -
Unet1[29] 0.951 & 0.024 1.9+£09 59+34 | 0.943 £0.035 20£1.2 6.1 £4.1 0.090

Unet2[29] 0.954 & 0.023 1.7£09 6.0+34 | 0945+ 0.039 19+12 6.1 +4.6 0.140
ACNNJ[29] 0.950 £ 0.026 19+ 1.1 6.4+ 14 | 0942 £ 0.034 20+12 6.3 +42 -
SHG[29] 0.951 4+ 0.023 1.9+1.0 57+33 | 0944 £+ 0.034 20+12 6.0+43 -
Unet++[29] 0.945 £ 0.026 21+10 72+45 | 0939 £ 0.034 21+1.1 7.1%5.1 -

PLANet [31] 0.962 £ 0.012 1.5+£0.5 4.6 £ 1.5 | 0.956 +0.014 1.6 0.6 46 +14 0.016

CDDenseUnet (ours) | 0.962 + 0.002 1.5+ 0.0 5.1+03 | 0.954 £ 0.002 1.6 + 0.1 554+02 0.015

Table 3: Performance of CDDenseUnet against other segmentation methods, left atrium.

Model ED ES Inference
1 Dice Score | | MAD (mm) | | HD (mm) | 1 Dice Score | | MAD (mm) | | HD (mm) | Time (s)
Unet1[29] 0.889 2.2 5.7 0.918 2.0 53 0.090
Unet2[29] 0.848 2.6 6.9 0.888 2.1 6.2 0.140
ACNNI29] 0.881 23 6.0 0911 22 5.8 -
CDDenseUnet (ours) 0.891 1.5 5.6 0.921 1.4 5.2 0.015

Figure 5: Prediction (blue) contours against ground truth (red). Right-most in A4C view.

For EF estimation, we grouped the different existing methods into five categories namely:
1) cardiologists estimates; 2) non-deep learning segmentation methods with traditional EF
estimation; 3) deep learning segmentation with traditional EF estimation; 4) actual frames


Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Amer, Ye, and Janan} 2021

Citation
Citation
{Liu, Wang, Liu, Yang, and Tian} 2021

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Liu, Wang, Liu, Yang, and Tian} 2021

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019

Citation
Citation
{Leclerc, Smistad, Pedrosa, Ostvik, Cervenansky, Espinosa, Espeland, Berg, Jodoin, Grenier, Lartizien, Drhooge, LT1o vstakken, and Bernard} 2019


TABUCO ET AL: TWO-VIEW LEFT VENTRICULAR SEGMENTATION & EF ESTIMATION 9

Table 4: Performance of TC-R(2+1)d against other existing methods for EF estimation.

Technique Observer/Model 1 Correlation bias + o | MAE (%) | | RMSE (%) | TR?
Ola vs O2 (inter-observer)[29] 0.801 9.1 £8.1 10.0 - -
Cardiologists Ola vs O3 (inter-observer)[29] 0.646 -12.6 £ 10.0 134 - -
02 vs O3 (inter-observer)[29] 0.569 35+ 11.0 8.5 - -
Ola vs O1b (intra-observer)[29] 0.896 -23+57 0.9 - -
Non-deep learning SRF[29] 0.465 -11.5£154 12.8 - -
segmentation + BEASM-fully[29] 0.731 -9.8+£83 10.7 - -
Simpson’s Rule BEASM-semi[29] 0.790 94+72 10.0 - -
Unet1[29] 0.791 -0.5+77 5.6 - -
Unet2[29] 0.823 1.0+ 7.1 53 - -

Deep learning

segmentation + ACNNI29] 0.799 -08+75 5.7 - -
Simpson’s Rule SHG[29] 0.770 -14+7.8 5.7 - -
Unet++[29] 0.789 -1.8+7.7 5.6 - -
Automated EF [45] - 1.8 +8.9 6.7 - -
PLANet [31] 0.882 0.6+58 - - -
Actual frames + R(2+1)d (A2C-only) 0.689 -0.3+84 6.8 8.6 0.425
action recognition R(2+1)d (A4C-only)” 0.705 -0.3+84 6.7 8.5 0.428
TC-R(2+1)d (ours) - concatenate? 0.777 -05+74 59 7.6 0.535
TC-R(2+1)d (ours) 0.786 -03+73 5.8 7.5 0.550
Deep learning R(2+1)d (A2C-only) 0.827 0.1 £64 52 6.6 0.645
segmentation + R(2+1)d (A4C-only) 0.793 -05+72 59 7.5 0.548
action recognition TC-R(2+1)d (ours) - concatenate 0.879 0.1 £55 4.4 5.5 0.718
TC-R(2+1)d (ours) - endocardium® 0.897 -0.1 £5.0 4.0 5.1 0.790
TC-R(2+1)d (ours) 0.903 -0.8+£49 3.8 5.0 0.792

“Similar to EchoNet-Dynamic [38].
bReplaces FFAM with concatenation. Similar to Dual-View EF [5].
“Using endocardium masks only for EF estimation.

with action recognition model; and 5) deep learning segmentation with action recognition
model. Our work belongs to the fifth category where we used the best performing CDDense-
Unet model to predict LV region segmentations for a given 32-frame video clip, and used
TC-R(2+1)d to estimate EF. We compared the performance of our model against these meth-
ods in Table 4. Based on the suggestion of Leclerc et al. [29], bias was not considered as
an evaluation metric since a lower bias score does not entail a better model. Of the relevant
metrics, TC-R(2+1)d achieved the best values for correlation, RMSE, and R? with scores of
0.903, 5.0%, and 0.792, respectively. The model also greatly outperformed inter-observer
estimates and previous models in MAE with a score of 3.8% and only behind intra-observer
estimate error of 0.9%. Further, the model has an average run-time performance of 0.02
seconds for estimating EF in a single two-view video clip.

The results in Table 4 also show comparative results for estimating EF when using actual
frames against segmented frames, and single-view versus two-view estimates. For experi-
ments using single-view clips, only a R(2+1)d network is used without the FFAM module,
while segmentation was skipped during pre-processing of clips for actual frames. We trained
these ablation experiments using the same settings discussed in Section 4. The results show
that the models produced higher scores when using segmented frames than actual video
clips. This is due to more visible expansions and contractions of LV regions, which are
difficult to visualize in actual, low-quality frames. Additionally, the use of two-view and
fully-segmented LV regions, instead of endocardium masks only, notably increased model
performance by as much as 0.2 MAE percentage points.

Based on these experiments, the use of action-recognition models alone will not yield
great performance. Previous deep learning approaches such as EchoNet [38] and Dual-
View EF [5] pale in comparison to our work and even with the traditional approch of using
Simpson’s Rule reaching MAE scores of only 6.7% and 5.9%, respectively. Therefore, we
argue that segmentation of LV regions is an important step towards achieving lower error
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rates especially when dealing with noisy, low-quality, and sub-optimal echocardiograms.
The use of two-view segmented video clip inputs in low-quality echocardiography produces
better EF estimation results than actual and/or single-view videos, exceeding the scores of
PLANet [31] and Unet2 [29].

6 Conclusion

In this research, we proposed a deep learning framework specifically designed to tackle chal-
lenges in echocardiography such as low-contrast images, time-consuming procedures, and
high inter-observer variability. The framework which is composed of a deep segmentation
model, CDDenseUnet, and an action recognition model, TC-R(2+1)d, showed improved
performance against existing methods in relevant geometric and clinical metrics reaching
the best scores of 95.2% dice, and 3.8% MAE, respectively, and with faster run-time perfor-
mance. Although it is possible to estimate EF using actual frames and in single-view, the
use of two-view and fully-segmented echocardiogram frames yielded better results superior
to other existing methods.
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ment of Science and Technology - Engineering and Research Development for Technology
(DOST-ERDT). This work is a collaboration with the University of the Philippines College
of Medicine and University of the Philippines - Surgical Innovation and Biotechnology Lab-
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